Cho đường tròn (O; R), A và B di động trên đường tròn (O) thỏa mãn

Câu hỏi :

Cho đường tròn (O; R), A và B di động trên đường tròn (O) thỏa mãn AOB^=1200. Vẽ OHAB tại H

a) Chứng minh H là trung điểm của AB

b) Tính OH, AB. Diện tích ΔOAB theo R

c) Tia OH cắt (O; R) tại C. Tứ giác OACB là hình gì ? Vì sao ?

* Đáp án

* Hướng dẫn giải

Cho đường tròn (O; R), A và B di động trên đường tròn (O) thỏa mãn (ảnh 1)

a) Ta có AB là dây cung mà OHABH là trung điểm AB (tính chất đường kính – dây cung)

b) ΔOAB cân tại O (OA = OB = R), có OH là đường cao OH là đường phân giác

AOH^=BOH^=600

ΔAHO vuông tại H có AOH^=600ΔAOH đều
OH=12OA=R2 và AH=32OA=R32AB=2AH=R32.2=R3

OH=R2,OC=ROH=12OCH là trung điểm OC

c) Tứ giác OACB có hai đường chéo OC, AB vuông góc nhau tại trung điểm mỗi đường OBCA là hình thoi

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 11 !!

Số câu hỏi: 10

Copyright © 2021 HOCTAP247