Vẽ nửa đường tròn đường kính BC của tam giác đều ABC về phía ngoài

Câu hỏi :

Vẽ nửa đường tròn đường kính BC của tam giác đều ABC về phía ngoài của tam giác. Trên đường tròn đó lấy hai điểm D và E sao cho BD=DE=EC. Các tia AD, AE cắt cạnh BC tại M và N. Chứng minh rằng BM=MN=NC

* Đáp án

* Hướng dẫn giải

Vẽ nửa đường tròn đường kính BC của tam giác đều ABC về phía ngoài (ảnh 1)

Xét ΔBAMΔCAN có: A1=A3 (góc nội tiếp chắn BD=CE)

B=C;AB=AC(gt)ΔBAM=ΔCAN(g.c.g)BM=CN

Xét ΔOBDOB=OD,O=600ΔOBD đều

DBO=600DBO=BCA, mà hai góc ở vị trí so le trong nên BD//ACBMCM=BDBA, mà BD=BOBA=BCBDBA=BOBC=12ODAB=12

O=B=600 mà hai góc ở vị trí so le trong nên AB // OD

Áp dụng định lý Ta let ta có OMMB=ODAB=12, Chứng minh tương tự ONNC=12

OM+ON=12MB+12MB=MB  (do  MB=NC)MN=MB

Vậy BM=MN=NC

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 21 !!

Số câu hỏi: 27

Copyright © 2021 HOCTAP247