Cho tam giác ABC nội tiếp đường tròn (O), hai đường cao BD, CE cắt nhau tại H.

Câu hỏi :

Cho tam giác ABC nội tiếp đường tròn (O), hai đường cao BD, CE cắt nhau tại H. Vẽ đường kính AF.

a) Tứ giác BFCH là hình gì ?

b) Gọi M là trung điểm của BC. Chứng minh rằng 3 điểm H, M, F thẳng hàng.

c) Chứng minh OM=12AH

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC nội tiếp đường tròn (O), hai đường cao BD, CE cắt nhau tại H. (ảnh 1)

a) Ta có: ABF=ACF=900 (góc nội tiếp chắn nửa đường tròn) nên ABBF,ACCF

*CEABFBABCH//BF,*BHACFCACBH//FCBHCF là hình bình hành

b) Tứ giác BHFC là hình bình hành mà M là trung điểm BC nên M là trung điểm HF

H,M,F thẳng hàng.

c) Xét ΔFHA có M là trung điểm HF, O là trung điểm AF

OM là đường trung bình ΔFHAOM=12AH

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 21 !!

Số câu hỏi: 27

Copyright © 2021 HOCTAP247