Trên đường tròn (O) lấy ba điểm A, B, C. Gọi M, N, P theo thứ tự là các điểm

Câu hỏi :

Trên đường tròn (O) lấy ba điểm A, B, C. Gọi M, N, P theo thứ tự là các điểm chính giữa của các cung AB, BC, AC. Gọi I là giao điểm của AB và MN, K là giao điểm của AN, BP. Chứng minh rằng:

a)ΔBNK cân                   b)IK//BCc)AI.BN=IB.AN

* Đáp án

* Hướng dẫn giải

Trên đường tròn (O) lấy ba điểm A, B, C. Gọi M, N, P theo thứ tự là các điểm (ảnh 1)

Ta có: PBN=12sdPC+sdCN (góc nội tiếp cùng chắn PN)

BCN=12sdAP+sdBN (góc có đỉnh bên trong đường tròn)

Mà PC = AP và CN=BN(gt)PBN=BCN

Dễ thấy ANM=BNM (góc nội tiếp chắn hai cung bằng nhau) nên NI là phân giác ANB

Ta có: AIIB=ANBNAI.BN=IB.AN

Theo chứng minh trên (câu a, b) , ΔBNK cân có NI là đường phân giác . Do đó IN cũng là đường trung trực của cạnh BKIB=IKΔBIK cân IBK=IKB hay ABD=IKB1APB=CBP(2) (góc nội tiếp chắn 2 cung bằng nhau)

Từ (1) và (2) suy ra CBD=IKPIK//BC

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 23 !!

Số câu hỏi: 18

Copyright © 2021 HOCTAP247