Cho đường tròn (O; R) đường kính AB cố định. Gọi M là trung điểm đoạn OB

Câu hỏi :

Cho đường tròn (O; R) đường kính AB cố định. Gọi M là trung điểm đoạn OB. Dây CD vuông góc với AB tại M. Điểm E chuyển động trên cung lớn CDEA. Nối AE cắt CD tại K. Nối BE cắt CD tại H.

a) Chứng minh 4 điểm B, M, E, K thuộc một đường tròn

b) Tính theo R diện tích hình quạt tròn giới hạn bởi OB, OC và cung nhỏ BC.

* Đáp án

* Hướng dẫn giải

Cho đường tròn (O; R) đường kính AB cố định. Gọi M là trung điểm đoạn OB (ảnh 1)

a) Ta có AEB=900 (góc nội tiếp chắn nửa đường tròn)

KEB=KMB=900 Tứ giác BMEK có đỉnh M, E liên tiếp cùng nhìn BK dưới 1 góc vuông nên BMEK là tứ giác nội tiếp

B,M,E,K cùng thuộc một đường tròn

b) Ta có AMCD tại trung điểm M của CD (tính chất đường kính – dây cung)

CODB có hai đường chéo vuông góc tại trung điểm mỗi đườngCODB là hình thoi

OC=CB=OB=RCOB đều

COB=600SquatBOC=πR2.60360=πR26(dvdt)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 28 !!

Số câu hỏi: 24

Copyright © 2021 HOCTAP247