Cho phương trình (m + 1)x^2 -2(m + 1)x + m - 2 = 0 (1) (m là tham số)

Câu hỏi :

Cho phương trình m+1x22m+1x+m2=01 (m là tham số)

a) Giải phương trình (1) với m = 3

b) Tìm các giá trị của m để phương trình (1) có hai nghiệm thỏa : 1x1+1x2=32

* Đáp án

* Hướng dẫn giải

m+1x22m+1x+m2=01m1

a) Khi m = 3, phương trình (1) thành 4x28x+1=0

Δ'=424.1=12>0 nên phương trình có hai nghiệm

x1=4+124=2+32x2=4124=232

b) Để phương trình có 2 nghiệm thì (1) có Δ'0

m+12m+1m20m2+2m+1m2+m+20m1

Kết hợp với điều kiện trên m>1, khi đó, áp dụng Vi et :

x1+x2=2m+1m+1=2x1x2=m2m+1. Ta có:

1x1+1x2=32x1+x2x1x2=32

hay   2m2m+1=323m6m+1=43m6=4m+4m=10(ktm)

Vậy không có m thỏa đề.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 29 !!

Số câu hỏi: 20

Copyright © 2021 HOCTAP247