Cho tam giác ABC có góc BAC = 45 độ. Các góc B, C đều nhọn. Đường tròn đường

Câu hỏi :

Cho tam giác ABC có BAC=450. Các góc B, C đều nhọn. Đường tròn đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm CD và BE

a) Chứng minh AE = BE

b) Chứng minh ADHE là tứ giác nội tiếp. Xác định tâm K của đường tròn ngoại tiếp này.

c) Chứng minh OE là tiếp tuyến của đường tròn ngoại tiếp ΔADE

d) Cho BC = 2a. Tính diện tích viên phân cung DE của đường tròn (O) theo a

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC có góc BAC = 45 độ. Các góc B, C đều nhọn. Đường tròn đường (ảnh 1)

a) Chứng minh: AE = BE

Ta có : BEA=900 (góc nội tiếp chắn nửa đường tròn)AEB=900

ΔAEB vuông ở E có BAE=450 nên vuông cân AE=BE

b) BDC=900ADH=900

Tứ giác ADHE có ADH+AEH=1800 nên nội tiếp đường tròn, tâm K của đường tròn này là trung điểm AH

c) ΔAEH vuông ở E có K là trung điểm AH nên KE=KA=12AH

Vậy ΔAKE cân ở K. Do đó KAE=KEA

ΔEOC cân ở O (do OC=OE)OCE=OECH là trực tâm ΔABCAHBC

HAC+ACO=900AEK+OEC=900

Do đó KEO=900OEKE

Điểm K là tâm đường tròn ngoại tiếp tứ giác ADHE nên cũng là tâm đường tròn ngoại tiếp ΔADE

Vậy OE là tiếp tuyến đường tròn ngoại tiếp ΔADE

d) Ta có : DOE=2ABE=2.450=900 (cùng chắn cung DE)

SquatDOE=πa2.9003600=πa24;   SDOE=12OD.OE=12a2

Vậy diện tích viên phân cung DE là :

πa24a22=a24π2

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 29 !!

Số câu hỏi: 20

Copyright © 2021 HOCTAP247