Cho tam giác ABC có Các góc B, C đều nhọn. Đường tròn đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm CD và BE
a) Chứng minh AE = BE
b) Chứng minh ADHE là tứ giác nội tiếp. Xác định tâm K của đường tròn ngoại tiếp này.
c) Chứng minh OE là tiếp tuyến của đường tròn ngoại tiếp
d) Cho BC = 2a. Tính diện tích viên phân cung của đường tròn (O) theo a
a) Chứng minh: AE = BE
Ta có : (góc nội tiếp chắn nửa đường tròn)
vuông ở E có nên vuông cân
b)
Tứ giác ADHE có nên nội tiếp đường tròn, tâm K của đường tròn này là trung điểm AH
c) vuông ở E có K là trung điểm AH nên
Vậy cân ở K. Do đó
cân ở O (do là trực tâm
Do đó
Điểm K là tâm đường tròn ngoại tiếp tứ giác ADHE nên cũng là tâm đường tròn ngoại tiếp
Vậy OE là tiếp tuyến đường tròn ngoại tiếp
d) Ta có : (cùng chắn cung DE)
;
Vậy diện tích viên phân cung DE là :
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247