Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao BD

Câu hỏi :

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao BD, CE của tam giác cắt nhau tại H DAC,EAB

a) Chứng minh tứ giác AEHD nội tiếp. Từ đó suy ra BCD=AED

b) Kẻ đường kính AK. Chứng minh AB.BC=AK.BD

c) Từ O kẻ OMBCMBC. Chứng minh H, M, K thẳng hàng.

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao BD (ảnh 1)

a) Ta có AEH=ADH=900AEHD là tứ giác nội tiếp

AED=AHD (cùng chắn AD)

Lý luận được ACB=AHD (cùng phụ CAH)AED=AHD)

b) Xét ΔABKΔBDC có: ABK=BDC=900;

AKB=BCD (cùng chắn AB)ΔABK~ΔBDCg.g

ABBD=AKBCAB.BC=AK.BD

c) Ta có : OMBCM là trung điểm BC

Vì BD//KCAC,BK//HCAB

HCKB là hình bình hành HK đi qua trung điểm M của BC

Vậy 3 điểm H, M, K thẳng hàng.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 29 !!

Số câu hỏi: 20

Copyright © 2021 HOCTAP247