Cho nửa đường tròn (O), đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn

Câu hỏi :

Cho nửa đường tròn (O), đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CA bằng cung CB, D là điểm tùy ý trên cung CB (D khác C và B), các tia AC và AD cắt tia Bx theo thứ tự ở E và F

a) Tính số đo góc AEB

b) Chứng minh tứ giác CDFE nội tiếp được đường tròn

c) Chứng minh BE2=AD.AF

* Đáp án

* Hướng dẫn giải

Cho nửa đường tròn (O), đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn (ảnh 1)
a) sdAC=sdCBACB^=450 ΔABE vuông tại B (do BE là tiếp tuyến) AEB^=450

b) Ta có AEB^=450CDA^=12sdAC=12.900=450 (do C chính giữa cung AB)

AEB^=CDA^=450CDFE là tứ giác nội tiếp

c) Ta có ADB^=900(góc nội tiếp chắn nửa đường tròn )

ΔABF vuông tại B, BD là đường cao AD.AF=AB2

Mà AB = BE (do tam giác ABE vuông cân) BE2=AD.AF(dpcm)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 34 !!

Số câu hỏi: 24

Copyright © 2021 HOCTAP247