Cho a, b, c là các số dương thỏa mãn (a + b + c)abc = 1. Tìm giá trị nhỏ nhất của biểu thức P

Câu hỏi :

Cho a, b, c là các số dương thỏa mãn (a + b + c)abc = 1. Tìm giá trị nhỏ nhất của biểu thức P =  a5a3+2b3+b5b3+2c3+c5c3+2a3.

* Đáp án

* Hướng dẫn giải

Ta có:

  a5a3+2b3=a2a3+2b32a2b3a3+2b3= a2 a2b3a3+2b3

a3 + 2b3 = a3 + b3 + b3 ≥  3a3.b3.b33Þ a3 + 2b3 ≥ 3ab2

Þ  a2b3a3+2b3  a2b33ab2Þ  a2b3a3+2b3  ab3

Þ a2 2 a2b3a3+2b3 ≥ a2   23ab Þ  a5a3+2b3 ≥ a2  23 ab

Chứng minh tương tự

b5b3+2c3   ≥ b2  23 bc,  c5c3+2a3 ≥ c2   23ca.

Từ đây ta có S ≥ a2 + b2 + c2   23ab   23bc   23ca

= 12[(a – b)2 + (b – c)2 + (c – a)2] + 13(ab + bc + ca)

Þ P ≥ 13(ab + bc + ca)

Áp dụng bất đẳng thức (x + y + z)2 ≥ 3(xy + yz + zx), ta có:

(ab + bc + ca)2 ≥ 3 Þ ab + bc + ca ≥  3

Þ P ≥  33. Đẳng thức xảy ra khi và chỉ khi a = b = c =  134

Vậy min S =  33 tại (a;b;c) =  134;134;134.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi Học kì 2 Toán 9 chọn lọc, có đáp án !!

Số câu hỏi: 87

Copyright © 2021 HOCTAP247