b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn 4x1 + x2 =3

Câu hỏi :

b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn 4x1+x2=3 

* Đáp án

* Hướng dẫn giải

b) Phương trình (1) có hai nghiệm phân biệt x1, x2

m0Δ'>0m06m+1>0m0m>16 

Áp dụng định lí Vi-ét, ta có: x1+x2=2m+1m  (2)x1x2=m4m  (3)

Theo đề bài ta có: 4x1+x2=3x2=34x1(4)

Thay (4) vào (2) ta được:

x1+34x1=2m+1m3x1=2m+1m3x1=m23m

x2=34m23m=5m+83m

Thay x1=m23m; x2=5m+83mvào (3) ta được

m23m.5m+83m=m4m

m25m+8=9mm42m217m+8=0m=8m=12

Kết hợp điều kiện suy ra m=8 hoặc m=12.

Vậy với m=8 hoặc m=12 thì phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn 4x1+x2=3 

* Bài toán tìm m để để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn x1=kx2 hoặc x1=kx22,…(*) thì ta đi giải hệ

x1+x2=...x1x2=......=(*) 

Giải 2 trong 3 phương trình trong hệ trên tìm x1, x2 theo m rồi thay vào phương trình còn lại, ta được phương trình chỉ còn tham số m. Giải tìm được m.

Copyright © 2021 HOCTAP247