1. Gọi AiAj là hai điểm xa nhau nhất trong các điểm thuộc tập hợp 8073 điểm đã cho.
Giả sử Ak là điểm cách xa đoạn thẳng AiAjnhất . Khi đó
Tam giác AiAjAk là tam giác lớn nhất và có diện tích hông lớn hơn 1
Vẽ các đường thẳng đi qua các điểm Ai, Aj, Ak lần lượt song song với các cạnh của tam giác AiAjAk
Ta được 4 tam giác nhỏ bằng nhau và một tam giác lớn chứa cả 4 tam giác nhỏ
Tam giác lớn có diện tích không quá 4 đơn vị. Do đó, tam giác lớn chứa tất cả 8073 điểm đã cho
Ta có 8073 chia cho 4 được 2018 và dư là 1 nên theo nguyên lý Dirichlet suy ra có ít nhất 1 trong 4 tam giác có 1 tam giác chứa 2019 trong 8073 điểm đã cho.
2. Đặt P = \(a\sqrt {{b^3} + \,\,1} \,\, + \,\,b\sqrt {{c^3} + \,\,1} \,\, + \,\,c\sqrt {{a^3} + \,\,1} \) suy ra
\(2P = 2a\sqrt {{b^3} + \,\,1} \,\, + \,\,2b\sqrt {{c^3} + \,\,1} \,\, + \,\,2c\sqrt {{a^3} + \,\,1} \)
\(\begin{array}{l}
= 2a\sqrt {\left( {b\,\, + \,\,1} \right)\left( {{b^2}\,b\,\, + \,\,1} \right)} + \,\,2b\sqrt {\left( {c\,\, + \,\,1} \right)\left( {{c^2} - \,\,c\,\, + \,\,1} \right)} + \,\,2c\sqrt {\left( {a\,\, + \,\,1} \right)\left( {{a^2} - \,\,a\,\, + \,\,1} \right)} \\
\le \,\,a\left( {{b^2} + \,\,2} \right)\, + \,\,b\left( {{c^2} + \,\,2} \right)\,\, + \,\,c\left( {{a^2} + \,\,2} \right) = a{b^2} + b{c^2} + c{a^2} + 6 = Q + 6
\end{array}\)
Không mất tính tổng quát, ta giả sử \(b\,\, \le \,\,c\,\, \le \,\,a\) ta có
\(b\left( {a\,\, - \,\,c} \right)\left( {c\,\, - \,\,b} \right)\,\, \ge \,\,0 \Leftrightarrow \,\,abc\,\, + \,\,{b^2}c\,\, \ge \,\,a{b^2} + \,\,b{c^2} \Leftrightarrow \,\,a{b^2} + \,\,b{c^2} + \,\,c{a^2} \le \,\,abc\,\, + \,\,{b^2}c\,\, + \,\,c{a^2}\)
Do đó Q \( \le \,\,abc\,\, + \,\,{b^2}c\,\, + \,\,c{a^2} \le \,\,2abc\,\, + \,\,{b^2}c\,\, + \,\,c{a^2} = \,\,c{\left( {a\,\, + \,\,b} \right)^2} = \,\,4c\frac{{a\,\, + \,\,b}}{2}.\frac{{a\,\, + \,\,b}}{2}\)
\( \le \,\,\frac{4}{{27}}{\left( {c\,\, + \,\,\frac{{a\, + \,\,b}}{2}\,\, + \,\,\frac{{a\, + \,\,b}}{2}} \right)^3} = \,\,\frac{{4{{\left( {a\,\, + \,\,b\,\, + \,\,c} \right)}^2}}}{{27}}\,\, = \,\,\frac{{{{4.3}^3}}}{{27}}\,\, = \,\,4\)
Do đó \(2P \le 10 \Leftrightarrow P \le 5\). Dấu “=” xảy ra khi a + b + c = 3, \(b\,\, \le \,\,c\,\, \le \,\,a\), 2c = a + b, abc = 2abc
<=> b = 0, c = 1, a = 2
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247