1.
a)
Ta có AD \( \bot \) BC tại D (vì tam giác ABC vuông cân tại A)
\(\widehat {ANM}\,\, = \,\,\widehat {APM}\,\, = \,\,{90^0}\) nên AMNP là tứ giác nội tiếp (1)
\(\widehat {NAP}\,\, = \,\,\widehat {NHP}\,\, = \,\,{90^0}\) nên NAPH là tứ giác nội tiếp (2)
Từ (1) và (2) suy ra N, A, P, H, M cùng thuộc một đường tròn
\( \Rightarrow \,\,\widehat {AMH}\,\, + \,\,\widehat {APH}\,\, = \,\,{180^0}\) và \(\widehat {ANM}\,\, = \,\,\widehat {APM}\,\, = \,\,{90^0}\) nên
AMNP là tứ giác nội tiếp (1)
Ta có \(\widehat {APC}\,\, = \,\,\widehat {MDC}\,\, = \,\,{90^0}\) nên MPCD là tứ giác nội tiếp
Suy ra \(\widehat {{P_1}} = \,\,\widehat {{C_1}}\) mà \(\widehat {{C_1}} = \,\,\widehat {MBD}\) (vì AD là trung trực của BC)
\( \Rightarrow \,\,\widehat {MBD}\,\, = \,\,\widehat {{P_1}}\)
Ta có \(\widehat {AMB}\,\, = \,\,\widehat {ADB}\,\, + \,\,\widehat {MBD}\,\, = \,\,{90^0}\,\, + \,\,\widehat {MBD}\) mà \(\widehat {MBD}\,\, = \,\,\widehat {{P_1}}\)
Suy ra \(\widehat {AMB}\,\, = \,\,{90^0}\,\, + \,\,\widehat {{P_1}} = \,\,\widehat {APM}\,\, + \,\,\widehat {{P_1}} = \,\,\widehat {APH} \Rightarrow \,\,\widehat {AMB}\,\, + \,\,\widehat {AMH}\,\, = \,\,\widehat {APH}\,\, + \,\,\widehat {AMH}\,\, = \,\,{180^0}\)
Do đó B, M, H thẳng hàng => AH \( \bot \) BH
b) Ta có \(\widehat {IBA}\,\, = \,\,\widehat {BAD}\,\, = \,\,{45^0}\) (vì BI // AD)
Tam giác ADB vuông tại D có DI là trung trực nên DI là phân giác góc ADB
\( \Rightarrow \,\,\widehat {ADI}\,\, = \,\,\widehat {BDI}\,\, = \,\,{45^0}\). Do đó \(\widehat {IBA}\,\, = \,\,\widehat {IDA}\,\,\left( { = \,\,{{45}^0}} \right) \Rightarrow \) A, I, B, D cùng thuộc một đường tròn (3)
Ta có \(\widehat {AHB}\,\, = \,\,\widehat {ADB}\,\, = \,\,{90^0}\) nên A, H, D, B cùng thuộc một đường tròn (4)
Từ (3) và (4) suy ra A, H, D, B, I cùng thuộc một đường tròn
\( \Rightarrow \,\,\widehat {IHD}\,\, + \,\,\widehat {IBD}\,\, = \,\,{180^0} \Rightarrow \,\,\widehat {IHD}\,\, = \,\,{90^0}\) (vì \(\widehat {IBD}\,\, = \,\,{90^0}\)) lại có \(\widehat {NHD}\,\, = \,\,{90^0}\)
Do đó H, N, I thẳng hàng.\
2.
Kẻ AD là đường kính của đường tròn (O)
Xét 2 tam giác vuông \(\Delta \)HBA và \(\Delta \)CDA
có \(\widehat {{B_1}}\,\, = \,\,\widehat {{D_1}}\) (vì nội tiếp cùng chắn cung AC)
nên \(\Delta \)HBA ∽\(\Delta \)CDA (g.g) \( \Rightarrow \,\,\frac{{{\rm{HB}}}}{{{\rm{CD}}}}\,\,{\rm{ = }}\,\,\frac{{{\rm{AB}}}}{{{\rm{AD}}}}\) => HB.AD = AB.CD
Tương tự \(\Delta \)HCA ∽\(\Delta \)BDA (g.g) \( \Rightarrow \frac{{{\rm{HC}}}}{{{\rm{BD}}}}\,\,{\rm{ = }}\,\,\frac{{{\rm{AC}}}}{{{\rm{AD}}}} \Rightarrow \) HC.AD = AC.BD
Do đó \(\,\frac{{{\rm{HB}}}}{{{\rm{HC}}}}\,\,{\rm{ = }}\,\,\frac{{{\rm{AB}}}}{{{\rm{AC}}}}{\rm{.}}\frac{{{\rm{DC}}}}{{{\rm{DB}}}}\) (1)
Ta có \(\Delta \)AMB ∽\(\Delta \)CMD (g.g) MB.CD = MD.AB
Tương tự \( \Rightarrow \,\,\frac{{{\rm{NB}}}}{{{\rm{MD}}}}\,\,{\rm{ = }}\,\,\frac{{{\rm{AB}}}}{{{\rm{CD}}}} \Rightarrow \) MC.BD = AC.MD
Do đó \(\,\frac{{{\rm{MB}}}}{{{\rm{MC}}}}\,\,{\rm{ = }}\,\,\frac{{{\rm{AB}}}}{{{\rm{AC}}}}{\rm{.}}\frac{{{\rm{DB}}}}{{{\rm{DC}}}}\) (2)
Ta có \(\frac{{{\rm{HB}}}}{{{\rm{HC}}}}\,\,{\rm{ + }}\,\,\frac{{{\rm{MB}}}}{{{\rm{MC}}}}\,\, = \,\,\frac{{{\rm{AB}}}}{{{\rm{AC}}}}\left( {\frac{{{\rm{DC}}}}{{{\rm{DB}}}}\,\,{\rm{ + }}\,\,\frac{{{\rm{DB}}}}{{{\rm{DC}}}}} \right)\,\, \ge \,\,\frac{{{\rm{AB}}}}{{{\rm{AC}}}}.2.\sqrt {\frac{{{\rm{DC}}}}{{{\rm{DB}}}}{\rm{.}}\frac{{{\rm{DB}}}}{{{\rm{DC}}}}} \,\, = \,\,2.\frac{{{\rm{AB}}}}{{{\rm{AC}}}}\)
Dấu « = » xảy ra <=> DB = DC <=> AB = AC <=> Tam giác ABC cân tại A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247