1. Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm của cạnh BC.

Câu hỏi :

1. Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm của cạnh BC. Lấy điểm M bất kỳ trên đoạn AD (M không trùng với A). Gọi N, P theo thứ tự là hình chiếu vuông góc của M trên các cạnh AB, AC và H là hình chiếu vuông góc của N lên đường thẳng PD.a) Chứng minh rằng AH vuông góc với BH

* Đáp án

* Hướng dẫn giải

1. 

a) 

Ta có AD \( \bot \) BC tại D (vì tam giác ABC vuông cân tại A)

\(\widehat {ANM}\,\, = \,\,\widehat {APM}\,\, = \,\,{90^0}\) nên AMNP là tứ giác nội tiếp  (1)

\(\widehat {NAP}\,\, = \,\,\widehat {NHP}\,\, = \,\,{90^0}\) nên NAPH là tứ giác nội tiếp  (2)

Từ (1) và (2) suy ra N, A, P, H, M cùng thuộc một đường tròn

\( \Rightarrow \,\,\widehat {AMH}\,\, + \,\,\widehat {APH}\,\, = \,\,{180^0}\) và \(\widehat {ANM}\,\, = \,\,\widehat {APM}\,\, = \,\,{90^0}\) nên

AMNP là tứ giác nội tiếp  (1)

Ta có \(\widehat {APC}\,\, = \,\,\widehat {MDC}\,\, = \,\,{90^0}\) nên MPCD là tứ giác nội tiếp 

Suy ra \(\widehat {{P_1}} = \,\,\widehat {{C_1}}\) mà \(\widehat {{C_1}} = \,\,\widehat {MBD}\) (vì AD là trung trực của BC)

\( \Rightarrow \,\,\widehat {MBD}\,\, = \,\,\widehat {{P_1}}\) 

Ta có \(\widehat {AMB}\,\, = \,\,\widehat {ADB}\,\, + \,\,\widehat {MBD}\,\, = \,\,{90^0}\,\, + \,\,\widehat {MBD}\) mà \(\widehat {MBD}\,\, = \,\,\widehat {{P_1}}\) 

Suy ra \(\widehat {AMB}\,\, = \,\,{90^0}\,\, + \,\,\widehat {{P_1}} = \,\,\widehat {APM}\,\, + \,\,\widehat {{P_1}} = \,\,\widehat {APH} \Rightarrow \,\,\widehat {AMB}\,\, + \,\,\widehat {AMH}\,\, = \,\,\widehat {APH}\,\, + \,\,\widehat {AMH}\,\, = \,\,{180^0}\) 

Do đó B, M, H thẳng hàng => AH \( \bot \) BH

b) Ta có \(\widehat {IBA}\,\, = \,\,\widehat {BAD}\,\, = \,\,{45^0}\) (vì BI // AD)

Tam giác ADB vuông tại D có DI là trung trực nên DI là phân giác góc ADB

\( \Rightarrow \,\,\widehat {ADI}\,\, = \,\,\widehat {BDI}\,\, = \,\,{45^0}\). Do đó \(\widehat {IBA}\,\, = \,\,\widehat {IDA}\,\,\left( { = \,\,{{45}^0}} \right) \Rightarrow \) A, I, B, D cùng thuộc một đường tròn  (3)

Ta có \(\widehat {AHB}\,\, = \,\,\widehat {ADB}\,\, = \,\,{90^0}\) nên A, H, D, B cùng thuộc một đường tròn  (4)

Từ (3) và (4) suy ra A, H, D, B, I cùng thuộc một đường tròn

\( \Rightarrow \,\,\widehat {IHD}\,\, + \,\,\widehat {IBD}\,\, = \,\,{180^0} \Rightarrow \,\,\widehat {IHD}\,\, = \,\,{90^0}\) (vì \(\widehat {IBD}\,\, = \,\,{90^0}\)) lại có \(\widehat {NHD}\,\, = \,\,{90^0}\)

Do đó H, N, I thẳng hàng.\

2. 

Kẻ AD là đường kính của đường tròn (O)

Xét 2 tam giác vuông \(\Delta \)HBA và \(\Delta \)CDA

có \(\widehat {{B_1}}\,\, = \,\,\widehat {{D_1}}\) (vì nội tiếp cùng chắn cung AC)

nên \(\Delta \)HBA ∽\(\Delta \)CDA (g.g) \( \Rightarrow \,\,\frac{{{\rm{HB}}}}{{{\rm{CD}}}}\,\,{\rm{ = }}\,\,\frac{{{\rm{AB}}}}{{{\rm{AD}}}}\) => HB.AD = AB.CD

Tương tự \(\Delta \)HCA ∽\(\Delta \)BDA (g.g) \( \Rightarrow \frac{{{\rm{HC}}}}{{{\rm{BD}}}}\,\,{\rm{ = }}\,\,\frac{{{\rm{AC}}}}{{{\rm{AD}}}} \Rightarrow \) HC.AD = AC.BD

Do đó \(\,\frac{{{\rm{HB}}}}{{{\rm{HC}}}}\,\,{\rm{ = }}\,\,\frac{{{\rm{AB}}}}{{{\rm{AC}}}}{\rm{.}}\frac{{{\rm{DC}}}}{{{\rm{DB}}}}\)  (1)

Ta có \(\Delta \)AMB ∽\(\Delta \)CMD (g.g)   MB.CD = MD.AB

Tương tự \( \Rightarrow \,\,\frac{{{\rm{NB}}}}{{{\rm{MD}}}}\,\,{\rm{ = }}\,\,\frac{{{\rm{AB}}}}{{{\rm{CD}}}} \Rightarrow \) MC.BD = AC.MD

Do đó \(\,\frac{{{\rm{MB}}}}{{{\rm{MC}}}}\,\,{\rm{ = }}\,\,\frac{{{\rm{AB}}}}{{{\rm{AC}}}}{\rm{.}}\frac{{{\rm{DB}}}}{{{\rm{DC}}}}\)  (2)

Ta có \(\frac{{{\rm{HB}}}}{{{\rm{HC}}}}\,\,{\rm{ + }}\,\,\frac{{{\rm{MB}}}}{{{\rm{MC}}}}\,\, = \,\,\frac{{{\rm{AB}}}}{{{\rm{AC}}}}\left( {\frac{{{\rm{DC}}}}{{{\rm{DB}}}}\,\,{\rm{ + }}\,\,\frac{{{\rm{DB}}}}{{{\rm{DC}}}}} \right)\,\, \ge \,\,\frac{{{\rm{AB}}}}{{{\rm{AC}}}}.2.\sqrt {\frac{{{\rm{DC}}}}{{{\rm{DB}}}}{\rm{.}}\frac{{{\rm{DB}}}}{{{\rm{DC}}}}} \,\, = \,\,2.\frac{{{\rm{AB}}}}{{{\rm{AC}}}}\)

Dấu « = » xảy ra <=> DB = DC <=> AB = AC <=> Tam giác ABC cân tại A.

Copyright © 2021 HOCTAP247