Nghiệm của hệ left{egin{matrix} x-ysqrt{3}=0\ xsqrt{3}+2y=3sqrt{2} end{matrix} ight. là:  

Câu hỏi :

Nghiệm của hệ \(\left\{\begin{matrix} x-y\sqrt{3}=0\\ x\sqrt{3}+2y=3\sqrt{2} \end{matrix}\right.\) là:  

A. \(\left\{\begin{matrix} x=-\frac{3\sqrt{6}}{5}\\ y=\frac{3\sqrt{2}}{5} \end{matrix}\right.\)

B. \(\left\{\begin{matrix} x=-\frac{3\sqrt{6}}{5}\\ y=-\frac{3\sqrt{2}}{5} \end{matrix}\right.\)

C. \(\left\{\begin{matrix} x=\frac{3\sqrt{6}}{5}\\ y=\frac{3\sqrt{2}}{5} \end{matrix}\right.\)

D. \(\left\{\begin{matrix} x=\frac{3\sqrt{6}}{5}\\ y=-\frac{3\sqrt{2}}{5} \end{matrix}\right.\)

* Đáp án

C

* Hướng dẫn giải

 

\(\left\{\begin{matrix} x-y\sqrt{3}=0\\ x\sqrt{3}+2y=3\sqrt{2} \end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} x\sqrt{3}-3y=0\\ x\sqrt{3}+2y=3\sqrt{2} \end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} x\sqrt{3}-3y=0\\ 5y=3\sqrt{2} \end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} x\sqrt{3}-3y=0\\ y=\frac{3\sqrt{2}}{5} \end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} x=\frac{3\sqrt{6}}{5}\\ y=\frac{3\sqrt{2}}{5} \end{matrix}\right.\)

Copyright © 2021 HOCTAP247