A. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm là: \({x_1} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a}\) ; \({x_2} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a}\)
B. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm là: \({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{{2a}}\) ; \({x_2} = \dfrac{{ - b' + \sqrt {\Delta '} }}{{2a}}\)
C. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt là: \({x_1} = \dfrac{{ - b - \sqrt \Delta }}{{2a}}\) ; \({x_2} = \dfrac{{ - b + \sqrt \Delta }}{{2a}}\)
D. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm là \({x_1} = - \dfrac{{b' - \sqrt {\Delta '} }}{a}\) ; \({x_2} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a}\)
B
Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {b^{'2}} - ac.\)
Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \dfrac{{b'}}{a}\)
Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,}}_2 = - \dfrac{{b' \pm \sqrt {\Delta '} }}{a}\)
Nên A, C, D đúng.
B sai vì nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \dfrac{{b'}}{a}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247