Rút gọn biểu thức sau \(\left( {x\sqrt {\dfrac{6}{x}} + \sqrt {\dfrac{2x}{3}} + \sqrt {6x} } \right):\sqrt {6x} \) với \(x > 0.\)

Câu hỏi :

Rút gọn biểu thức \(\left( {x\sqrt {\dfrac{6}{x}}  + \sqrt {\dfrac{2x}{3}}  + \sqrt {6x} } \right):\sqrt {6x} \) với \(x > 0.\)

A. 2

B. \(\dfrac{7}{3}\)

C. \(\dfrac{8}{3}\)

D. 3

* Đáp án

B

* Hướng dẫn giải

\( \left( {x\sqrt {\dfrac{6}{x}}  + \sqrt {\dfrac{2x}{3}}  + \sqrt {6x} } \right):\sqrt {6x} \)

         \(\eqalign{
& = \left( {x\sqrt {{{6x} \over {{x^2}}}} + \sqrt {{{2x.3} \over {{3^2}}}} + \sqrt {6x} } \right):\sqrt {6x} \cr 
& = \left( {x{{\sqrt {6x} } \over {\sqrt {{x^2}} }} + {{\sqrt {6x} } \over {\sqrt {{3^2}} }} + \sqrt {6x} } \right):\sqrt {6x} \cr 
& = \left( {x{{\sqrt {6x} } \over x} + {{\sqrt {6x} } \over 3} + \sqrt {6x} } \right):\sqrt {6x} \cr 
& = \left( {1.\sqrt {6x} + {1 \over 3}\sqrt {6x} + \sqrt {6x} } \right):\sqrt {6x} \cr 
& = \left( {1 + {1 \over 3} + 1} \right)\sqrt {6x} :\sqrt {6x} \cr 
& = {7 \over 3}\sqrt {6x} :\sqrt {6x} \cr 
& = \dfrac{7}{3} .\cr} \)

Copyright © 2021 HOCTAP247