A. \({S_{\min }} = \dfrac{{8}}{83}\)
B. \({S_{\min }} = \dfrac{{83}}{8}\)
C. \({S_{\min }} = \dfrac{{63}}{7}\)
D. \({S_{\min }} = \dfrac{{7}}{63}\)
B
Áp dụng BĐT : \({\left( {a + b} \right)^2} \ge 4ab \Leftrightarrow \dfrac{{a + b}}{{ab}} \ge \dfrac{4}{{a + b}} \)
\(\Leftrightarrow \dfrac{1}{a} + \dfrac{1}{b} \ge \dfrac{4}{{a + b}}\)
\(\begin{array}{l}S = \dfrac{1}{{{a^2} + {b^2}}} + \dfrac{{25}}{{ab}} + ab\\S = \dfrac{1}{{{a^2} + {b^2}}} + \dfrac{1}{{2ab}} + \dfrac{{49}}{{2ab}} + ab\\S \ge \dfrac{4}{{{a^2} + {b^2} + 2ab}} + \dfrac{{49}}{{2ab}} + ab\\S \ge \dfrac{4}{{{{\left( {a + b} \right)}^2}}} + \dfrac{{17}}{{2ab}} + \dfrac{{16}}{{ab}} + ab\end{array}\)
Ta có \(2\sqrt {ab} \le a + b\)
\(\Leftrightarrow ab \le \dfrac{{{{\left( {a + b} \right)}^2}}}{4} \le 4\)
\(\Rightarrow \dfrac{4}{{{{\left( {a + b} \right)}^2}}} \ge \dfrac{1}{4}\)
\( \Rightarrow S \ge \dfrac{1}{4} + \dfrac{{17}}{{2.4}} + 2\sqrt {\dfrac{{16}}{{ab}}.ab} = \dfrac{{83}}{8}\)
Dấu bằng xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}a + b = 4\\a = b\\ab = 4\end{array} \right. \Leftrightarrow a = b = 2\).
Vậy \({S_{\min }} = \dfrac{{83}}{8}\), đạt tại \(a = b = 2\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247