Rút gọn biểu thức: \(B = \dfrac{{a + 2\sqrt a }}{{\sqrt a + 2}} - \dfrac{{a - 4}}{{\sqrt a - 2}}\) (với \(a \ge 0,\;\;a \ne 4\)).

Câu hỏi :

Rút gọn biểu thức: \(B = \dfrac{{a + 2\sqrt a }}{{\sqrt a  + 2}} - \dfrac{{a - 4}}{{\sqrt a  - 2}}\) (với \(a \ge 0,\;\;a \ne 4\)).

A. - 2

B. 2

C. - 3

D. 3

* Đáp án

A

* Hướng dẫn giải

\(\begin{array}{l}B = \dfrac{{a + 2\sqrt a }}{{\sqrt a  + 2}} - \dfrac{{a - 4}}{{\sqrt a  - 2}}\;\;\;\left( {a \ge 0,\;\;a \ne 4} \right)\\\;\;\;\;\;\;\;\, = \dfrac{{\sqrt a \left( {\sqrt a  + 2} \right)}}{{\sqrt a  + 2}} - \dfrac{{\left( {\sqrt a  + 2} \right)\left( {\sqrt a  - 2} \right)}}{{\sqrt a  - 2}}\\\;\;\;\;\;\;\;\; = \sqrt a  - \left( {\sqrt a  + 2} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt a  - \sqrt a  - 2\\\;\;\;\;\;\;\;\; =  - 2\end{array}\)

Copyright © 2021 HOCTAP247