Cho hàm số y= - x^2 (P) và đường thẳng (d): y=2mx-5 Chứng tỏ rằng trên mặt

Câu hỏi :

Cho hàm số y= - x2 (P) và đường thẳng (d): y = 2mx - 5

* Đáp án

* Hướng dẫn giải

b) Phương trình hoành độ giao điểm của (P) và (d) là:

-x2 = 2mx - 5 ⇔ x2 + 2mx - 5 = 0

Δ'= m2+ 5 > 0 với ∀m ∈ R

Vậy trên mặt phẳng Oxy đường thẳng (d) và Parabol (P) luôn cắt nhau tại hai điểm phân biệt.

Khi m = 2, phương trình hoành độ giao điểm của (P) và (d) là:

-x2= 4x - 5 ⇔ x2 + 4x - 5 = 0

Δ =42 - 4.1.(-5) = 36

⇒ Phương trình có 2 nghiệm

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy tọa độ hai giao điểm là M(1;-1) và N(-5;-25)

Copyright © 2021 HOCTAP247