Cho hai đường thẳng d1: mx – 2(3n + 2)y = 18 và d2: (3m – 1)x + 2ny = −37

Câu hỏi :

Cho hai đường thẳng d1: mx  2(3n + 2)y = 18d2: (3m  1)x + 2ny = 37. Tìm các giá trị của m và n để d1, d2 cắt nhau tại điểm I (−5; 2)

A. m = 2; n = 3

B. m = −2; n = −3

C. m = 2; n = −3

D. m = 3; n = −2

* Đáp án

* Hướng dẫn giải

+) Thay tọa độ điểm I vào phương trình d1 ta được:

m.(−5) – 2(3n + 2).2 = 18−5m – 12n − 8 = 185m + 12n = −26

+) Thay tọa độ điểm I vào phương trình d2 ta được:

(3m – 1). (−5) + 2n.2 = −37−15m + 5 + 4n = −3715m – 4n = 42

Suy ra hệ phương trình

5m+12n=2615m4n=425m+12n=26n=15m424n=15m4245m+12.15m424=26n=15m4245m+315m42=26

n=15m42450m126=26m=2n=3

Vậy m = 2; n = −3

Đáp án: C

Copyright © 2021 HOCTAP247