Cho tam giác nhọn ABC hai đường cao AD và BE cắt nhau tại H

Câu hỏi :

Cho tam giác nhọn ABC hai đường cao AD và BE cắt nhau tại H. Biết HD:HA = 1:2. Khi đó tanABC^.tanACB^ bằng?

A. 2

B. 3

C. 1

D. 4

* Đáp án

* Hướng dẫn giải

Xét tam giác vuông ABD và ADC, ta có tanB=ADBD; tanC=ADCD

Suy ra: tanB.tanC=AD2BD.CD (1)

Lại có: HBD^=CAD^ (cùng phụ với ACB^ ) và HDB^=ADC^=900

Do đó BDH~ADC(g.g), suy ra DHDC=BDAD, do đó BD.DC = DH.AD (2)

Từ (1) và (2) suy ra tanB.tanC=AD2DH.AD=ADDH(3)

Theo giả thiết HDAH=12 suy ra HDAH+HD=12+1 hay HDAD=13, suy ra AD = 3HD

Thay vào (3) ta được: tanB.tanC=3HDDH=3

Đáp án cần chọn là: B

Copyright © 2021 HOCTAP247