Cho tam giác nhọn ABC hai đường cao AD và BE cắt nhau tại H

Câu hỏi :

Cho tam giác nhọn ABC hai đường cao AD và BE cắt nhau tại H. Biết HD:HA = 3:2. Khi đó tanABC^.tanACB^ bằng?

A. 3

B. 5

C35

D53

* Đáp án

* Hướng dẫn giải

Xét tam giác vuông ABD và ADC, ta có: tanB=ADBD; tanC=ADCD

Suy ra: tanB.tanC=AD2BD.CD (1)

Lại có HBD^=CAD^ (cùng phụ với ACB^) và HDB^=ADC^=900

Do đó BDH~ADC(g.g), suy ra DHDC=BDAD, do đó BD.DC = DH.AD (2)

Từ (1) và (2) suy ra tanB.tanC=AD2DH.AD=ADDH (3)

Theo giả thiết HDAH=32 suy ra HDAH+HD=32+3 hay HDAD=35, suy ra AD = 53 HD

Thay vào (3) ta được: tanB.tanC=53HDDH=53

Đáp án cần chọn là: D

Copyright © 2021 HOCTAP247