Cho đường tròn (O;R) và 2 dây AB và CD bằng nhau và vuông góc với nhau tại I. Giả sử IA=2, IB=4. Khoảng cách từ tâm O tới AB là d và tới CD là d' Giá trị của d và d'

Câu hỏi :

Cho đường tròn (O;R) và 2 dây AB và CD bằng nhau và vuông góc với nhau tại I. Giả sử IA=2, IB=4. Khoảng cách từ tâm O tới AB là d và tới CD là d'Giá trị của d và d'

A. \(d=2;d'=1\)

B. \(d=d'=1\)

C. \(d=d'=2\)

D. \(d=1;d'=2\)

* Đáp án

B

* Hướng dẫn giải

Gọi E, F lần lượt là hình chiếu vuông góc của O lên CD, AB. Vì tứ giác OFIE có 3 góc vuông nên OFIE là hình chữ nhật

ta lại có OE=OF do AB=CD nên OFIE là hình vuông khi đó:

\(OE=OF=EI=FI=FA-IA=\frac{AB}{2}-IA=\frac{IA+IB}{2}-IA=1\)

Copyright © 2021 HOCTAP247