Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R)

Câu hỏi :

Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R) (với AB < AC). BE và CF là 2 đường cao của tam giác cắt nhau tại H

* Đáp án

* Hướng dẫn giải

a, Xét tứ giác BEFC có:

∠BEC = 900 (CE là đường cao)

∠BFC = 900 (BF là đường cao)

=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BEFC là tứ giác nội tiếp

Xét tứ giác AEHF có:

∠AEH = 900 (CE là đường cao)

∠AFH = 900 (BF là đường cao)

=> ∠AEH + ∠AFH = 1800

=> Tứ giác AEHF là tứ giác nội tiếp

b,

Xét ΔSBE và ΔSFC có:

∠FSC là góc chung

∠SEB = ∠SCF (Tứ giác BEFC là tứ giác nội tiếp)

=> ΔSBE ∼ ΔSFC (g.g)

=> SBSFSESC

=> SE.SF = SB.SC (1)

Xét ΔSMC và ΔSNB có:

∠ NSC là góc chung

∠ SCM = ∠SNB (Hai góc nội tiếp cùng chắn cung MB)

=> ΔSMC ∼ ΔSBN (g.g)

=> SMSBSCSN

=>SM.SN = SB.SC (2)

Từ (1) và (2) => SE.SF = SM.SN

c, Ta có:

KAE^=KCB^ (2 góc nội tiếp cùng chắn cung KB)

HAE^=BFM^ (tứ giác AEHF là tứ giác nội tiếp)

KCB^=BFM^ (tứ giác BEFC là tứ giác nội tiếp)

=> ∠KAE = ∠HAE

=> AE là tia phân giác của góc ∠KAH

Mà AE cũng là đường cao của tam giác KAH

=> ΔKAH cân tại A

=> AE là đường trung tuyến của ΔKAH

=> E là trung điểm của KH hay K và H đối xứng nhau qua AB

d, Tia BF cắt đường tròn (O) tại J

∠KJB = ∠KCB (2 góc nội tiếp cùng chắn cung KB)

∠KCB = ∠EFH (tứ giác BEFC là tứ giác nội tiếp )

=> ∠KJB = ∠EFH

Mà 2 góc này ở vị trí so le trong

=> KJ // EF

KI // EF (gt)

=> I ≡ J

=> H, F, J thẳng hàng

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ Đề thi vào 10 môn Toán có đáp án !!

Số câu hỏi: 132

Copyright © 2021 HOCTAP247