a, Bảng giá trị:
Đồ thị (P) là đường Parabol nằm phía dưới trục hoành, nhận Oy làm trục đối xứng và nhận điểm O (0;0) làm đỉnh và điểm cao nhất
b, Phương trình hoành độ giao điểm của (P) và (d) là:
– = m(x – 1) – 2
<=> x2 + 4mx – 4m – 8 = 0
Δ' = (2m)2 – (–4m – 8) = 4m2 + 4m + 8 = 4(m + 1)2 + 4 > 0∀m
=> Phương trình luôn có 2 nghiệm phân biệt hay (d) cắt (P) tại 2 điểm phân biệt A, B có hoành độ là xA; xB
Theo định lí Vi-et ta có:
xA2xB + xB2xA = xAxB(xA + xB ) = (–4m – 8).( –4m)
= 16m2 + 32m = 16(m + 1)2 – 16
Ta có: 16(m + 1)2 ≥ 0 ∀m
=> 16(m + 1)2 –16 ≥ –16 ∀m
Dấu bằng xảy ra khi m + 1 = 0 <=> m = –1
Vậy GTNN của biểu thức là –16, đạt được khi m = –1
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247