1. Xét tứ giác BFEC có:
∠BFC = (CF là đường cao)
∠BEC = (BE là đường cao)
=> 2 đỉnh E và F cùng nhìn BC dưới một góc bằng nhau
=> Tứ giác BFEC là tứ giác nội tiếp.
2. Xét ΔABE và ΔACF có:
∠BAC là góc chung
∠AEB = ∠AFC =
=> ΔABE ∼ ΔACF (g.g)
=> =
=> AB.AF = AC.AE
3. Tứ giác BFEC là tứ giác nội tiếp
=> ∠EFC = ∠EBC (2 góc nội tiếp cùng chắn cung EC)
Xét (O) có: ∠CNM = ∠EBC (2 góc nội tiếp cùng chắn cung MC)
=> ∠EFC = ∠CNM
Mà 2 góc này ở vị trí đồng vị
=> EF // MN
4. Kẻ đường kính AA', Nối A'H cắt BC tại K
Ta có: ∠ABA' = (góc nội tiếp chắn nửa đường tròn)
=> AB ⊥ BA'
HC ⊥ AB (HC là đường cao)
=> BA' // HC
Tương tự: ∠ ACA' = 90o (góc nội tiếp chắn nửa đường tròn)
=> AC ⊥ CA'
HB⊥AC (BH là đường cao)
=> CA' // HB
Xét tứ giác BA'CH có:
=> Tứ giác BA' CH là hình bình hành
2 đường chéo BC và A'H giao nhau tại K
=> K là trung điểm của A'H và BC
Do B, C,O cố định nên OK cố định
Xét tam giác AHA' có:
O là trung điểm của AA'
K là trung điểm của A'H
=> OK là đường trung bình của tam giác AHA'
=> OK = 1/2AH => AH = 2OK
Ta có:
4SAHE = 2AE.EH => AE2 + EH2 = AH2 = 4OK2
=> SAHE => OK2
Dấu bằng xảy ra khi AE = EH
=> ΔAHE cân tại E => ∠HAE = => ∠CAB =
Vậy điểm A nằm trên đường tròn sao cho ∠CAB =
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247