1. Xét tứ giác ACGO có:
∠CGA = (CG ⊥ AG)
∠COA = (CO ⊥ AO)
=> 2 đỉnh G và O cùng nhìn CA dưới 1 góc bằng nhau
=> Tứ giác ACGO là tứ giác nội tiếp
2. Tứ giác ACGO là tứ giác nội tiếp
=> ∠COG = ∠CAG (2 góc nội tiếp cùng chắn cung CG)
Mà ∠CAG = ∠COF/2 (góc nội tiếp bằng nửa góc ở tâm cùng chắn 1 cung)
=> ∠COG = ∠COF/2
=> OG là tia phân giác của góc ∠COF
3. Xét (O): ∠FCB = ∠FAB (2 góc nội tiếp cùng chắn cung FB)
Tứ giác ACGO là tứ giác nội tiếp
=> ∠OCG = ∠FAB (2 góc nội tiếp cùng chắn cung GO)
=> ∠FCB∠ = ∠OCG
Xét ΔCGO và ΔCFB có:
∠OCG = ∠FCB
∠GOC = ∠FBC (= ∠CAF )
=> ΔCGO ∼ ΔCFB (g.g)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247