1. Cho đường tròn (O; R) và dây BC cố định, BC bằng R căn 3

Câu hỏi :

1. Cho đường tròn (O; R) và dây BC cố định, BC = R3 A là điểm di động trên cung lớn BC (A khác B, C) sao cho tam giác ABC nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại điểm H. Kẻ đường kính AF của đường tròn (O), AF cắt BC tại điểm N

* Đáp án

* Hướng dẫn giải

1.

a, Xét tứ giác BEDC có:

∠BEC = 900 (CE là đường cao)

∠BDC = 900 (BD là đường cao)

=> Hai đỉnh D và E cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BEDC là tứ giác nội tiếp

b, Xét ΔAEC và ΔADB có:

∠BAC là góc chung

∠AEC = ∠BDA = 900

=> ΔAEC ∼ ΔADB (g.g)

=> AEADACAB

=> AE.AB = AC.AD

c, Ta có:

∠FBA = 900 (góc nội tiếp chắn nửa đường tròn)

=>FB⊥AB

Lại có: CH⊥AB (CH là đường cao)

=> CH // FB

Tương tự,( FCA) = 900 (góc nội tiếp chắn nửa đường tròn)

=>FC⊥AC

BH là đường cao => BH ⊥AC

=> FC // BH

Xét tứ giác CFBH có:

CH // FB

FC // BH

=> Tứ giác CFBH là hình bình hành.

Mà I là trung điểm của BC

=> I cũng là trung điểm của FH

Hay F, I, H thẳng hàng

2. Diện tích xung quanh của hình trụ:

S = 2πRh = 2πR2 = 128π (do chiều cao bằng bán kính đáy)

=> R = 8 cm ; h = 8cm

Thể tích của hình trụ là

V = πR2 h = π.82.8 = 512π (cm3)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ Đề thi vào 10 môn Toán có đáp án !!

Số câu hỏi: 132

Copyright © 2021 HOCTAP247