a, Xét tứ giác ADMO có:
∠DMO = (do M là tiếp tuyến của (O))
∠DAO = (do AD là tiếp tuyến của (O))
=> ∠DMO + ∠DAO =
=> Tứ giác ADMO là tứ giác nội tiếp
b, Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM
=>(AOD = 1/2∠AOM
Mặt khác ta có (ABM là góc nội tiếp chắn cung AM)
=> ∠ABM = 1/2∠AOM
=> ∠AOD = ∠ABM
Mà 2 góc này ở vị trí đồng vị
=> OD // BM
Xét tam giác ABN có:
OM// BM; O là trung điểm của AB
=> D là trung điểm của AN
c, Ta có: ΔOBM cân tại O; OE ⊥ MB => OE là đường trung trực của MB
=> EM = EB = > ΔMEB cân tại E => ∠EMB = ∠EBM (1)
ΔOBM cân tại O => ∠OMB = ∠OBM (2)
Cộng (1) và (2) vế với vế, ta được:
∠EMB + ∠OMB = ∠EBM + ∠OBM ⇔ ∠EMO =∠EBO ⇔ ∠EBO = 90o
=>OB ⊥ BE
Vậy BE là tiếp tuyến của (O)
d, Lấy điểm E trên tia OA sao cho OE = OA/3
Xét tam giác ABI có OI vừa là đường cao vừa là trung tuyến
=> Tam giác ABI cân tại I => IA = IB; ∠IBA = ∠IAB
Ta có:
=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN
Tam giác NAB vuông tại A có: IA = IN = IB
=> IA là trung tuyến của tam giác NAB
Xét ΔBNA có:
IA và BD là trung tuyến; IA ∩ BD = {J}
=> J là trọng tâm của tam giác BNA
Xét tam giác AIO có:
= =
=> JE // OI
=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.
Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d
Do d // OI (cùng vuông góc AB) nên ta có:
=
Mà = => =
AI là trung tuyến của tam giác NAB
=> J' là trọng tâm tam giác NAB
Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247