Cho đường tròn (O; R) và điểm A nằm ngoài (O) sao cho

Câu hỏi :

Cho đường tròn (O; R) và điểm A nằm ngoài (O) sao cho OA = 3R. Vẽ các tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Vẽ cát tuyến AMN với (O) (M nằm giữa A và N và AMN không đi qua O). Gọi I là trung điểm của MN

* Đáp án

* Hướng dẫn giải

a, Ta có: ∠ABO = 90o(Do BA là tiếp tuyến của (O)) nên B thuộc đường tròn đường kính OA

Tương tự ∠ACO = 90onên C thuộc đường tròn đường kính OA

Do I là trung điểm của MN nên OI ⊥ MN

=> ∠AIO = 90o => I thuộc đường tròn đường kính OA

Vậy 5 điểm O, A , B, C, I cùng thuộc đường tròn đường kính OA

b, Xét ΔABM và ΔANB có:

∠BAN là góc chung

∠ABM = ∠ANB (2 góc cùng chắn ⏜BM)

=> ΔABM ∼ ΔANB

=> ABANAMAB => AM.AN = AB2

Xét tam giác OAB vuông tại O có:

AB2 = OA2 – OB2 = (3R)2 – R2 = 8R2

c, Gọi độ dài AM là x

=> AN = x + R3

Theo câu b ta có:

AM.AN = 8R2

=> x(x + R3) = 8R2 ⇔ x2 + xR3 – 8R2 = 0

Δ = (R3)2 – 4.( –8R2 ) = 35R2 => =R35

Vậy 

=> AM.AN = AB2

d, Ta có:

AB = AC (tính chất 2 tiếp tuyến cắt nhau)

và OB = OC

=> OA là đường trung trực của BC

Do đó OA ⊥ BC tại H

Xét ΔOHK và Δ OIA có:

∠AOK là góc chung

∠OHK = ∠OIA = 90o

=> ΔOHK ∼ ΔOIA

Mặt khác, xét tam giác ABO vuông tại B có BH là đường cao

=> OH.OA = OB2 = R2 (2)

Từ (1) và (2) => OK.OI = R2 = OM2

=> OMOKOIOM

Xét tam giác OIM và tam giác OMK có:

∠MOK là góc chung

OMOKOIOM

=> ΔOIM ∼ ΔOMK (c.g.c)

=> ∠OIM = ∠OMK = 90o Hay OM ⊥ MK

Vậy MK là tiếp tuyến của (O)

Chứng minh tương tự ta được NK là tiếp tuyến của (O).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ Đề thi vào 10 môn Toán có đáp án !!

Số câu hỏi: 132

Copyright © 2021 HOCTAP247