Cho tam giác nhọn ABC (AB nhỏ hơn AC) nội tiếp đường tròn (O)

Câu hỏi :

Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) có các đường cao AD, BE, CF, trực tâm H. Gọi I, K lần lượt là các trung điểm của các đoạn BC và AH

* Đáp án

* Hướng dẫn giải

a, Xét tứ giác BFEC có:

∠BFC = 90o (CF là đường cao)

∠BEC = 90o (BE là đường cao)

=> 2 đỉnh E và F cùng nhìn cạnh BC dưới 2 góc bằng nhau

=> Tứ giác BFEC là tứ giác nội tiếp

Xét tứ giác BFHD có:

∠BFH = 90o (CF là đường cao)

∠BDH = 90o (AD là đường cao)

=> ∠BFH + ∠BDH = 180o

=> Tứ giác BFHD là tứ giác nội tiếp

b, Xét ΔDHC và ΔDBA có:

∠HDC = ∠BDA = 90o

∠DHC = ∠DBA ( cùng bù với góc ∠FHD )

=> ΔDHC ∼ ΔDBA (g.g)

=> DHDBDCDA

=> DH.DA = DC.DB

c, Ta có: ∠KDI = 90o (AD là đường cao)

=> D thuộc đường tròn đường kính KI (1)

Tam giác AFH vuông tại F có FK là trung tuyến nên KF = KH

Do đó ΔKFH cân tại K => ∠KFH = ∠KHF

Mà ∠KHF = ∠CHD (đối đỉnh) => ∠KFH = ∠CHD

Tương tự ΔICF cân tại C (do IF = IC) => ∠IFC = ∠ICF

Từ đó: ∠KFI = ∠KFH + ∠IFC = ∠CHD + ∠ICF = 90o (ΔDHC vuông tại D)

=> F thuộc đường tròn đường kính KI (2)

Chứng minh tương tự ∠KEI = 90o nên E thuộc đường tròn đường kính KI (3)

Từ (1), (2), (3): 5 điểm K, F, D, I, E thuộc đường tròn đường kính KI

d, Xét ΔMFB và ΔMCE có:

=> ΔMFB ∼ ΔMCE

=> MF.ME = MB.MC

Chứng minh tương tự: ME. MF = MD. MI

Từ đó: MB.MC = MD. MI

Vậy 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ Đề thi vào 10 môn Toán có đáp án !!

Số câu hỏi: 132

Copyright © 2021 HOCTAP247