Xét sự biến thiên của các hàm số. y = f(x) = 2x^2 trong 

Câu hỏi :

Xét sự biến thiên của các hàm số.

* Đáp án

* Hướng dẫn giải

❶ Với x1,x20;+ và x1x2, ta có:

A=f(x1)f(x2)x1x2=2x122x22x1x2=2(x1+x2)>0,x1,x20;+

Vậy hàm số đồng biến trên 0;+

❷  Với x1,x20;+ và x1x2, ta có:

A=f(x1)f(x2)x1x2=6x12+6x22x1x2=6(x1+x2)<0,x1,x20;+

Vậy hàm số đồng biến trên 0;+

❸ Với x1,x21;+ và x1x2, ta có:

A=f(x1)f(x2)x1x2=x12+2x1+2x222x23x1x2=x1+x2+2>0,x1,x21;+

Vậy hàm số đồng biến trên 1;+

Với x1,x21;+ và x1x2, ta có:

A=f(x1)f(x2)x1x2=x12+2x1+2x222x23x1x2=x1+x2+2>0,x1,x21;+

Vậy hàm số nghịch biến trên 1;+

❹ Với x1,x22;+ và x1x2, ta có:

A=f(x1)f(x2)x1x2=x12+4x1+1+x224x21x1x2=x1x2+4<0,x1,x22;+

Vậy hàm số đồng biến trên 0;+

Với x1,x2;2 và x1x2, ta có:

A=f(x1)f(x2)x1x2=x12+4x1+1+x224x21x1x2=x1x2+4>0,x1,x2;2

Vậy hàm số nghịch biến trên ;2

Copyright © 2021 HOCTAP247