Cho tam giác ABC cân tại A, đường cao AH = 2cm, BC = 8cm. Đường vuông góc

Câu hỏi :

Cho tam giác ABC cân tại A, đường cao AH = 2cm, BC = 8cm. Đường vuông góc với AC tại C cắt đường thẳng AH ở D

A. d = 8cm

B. d = 12cm

C. d = 10cm

D. d = 5cm

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có ABC cân tại A có đường cao AH nên AH cũng là đường phân giác CAD^=DAB^

Suy ta ACD = ABD (c – g – c) nên ABD^=ACD^ = 90o

Lấy I là trung điểm AD. Xét hai tam giác vuông ABD và ACD có

IA=ID=IB=IC=AD2

Nên I là điểm cách đều A, B, D, C hay A, B, D, C cùng nằm trên đường tròn tâm I, đường kính AD

Do đó ta cần tính độ dài AD

Vì BC = 8cm  BH = 4cm. Áp dụng định lý Pytago cho tam giác vuông AHB ta được AB=AH2+BH2=4+16=25

Áp dụng hệ thức lượng trong tam giác vuông ABD ta có AB2 = AH. AD

AD=AB2AH=202=10

Vậy đường kính cần tìm là 10cm

Copyright © 2021 HOCTAP247