Cho đường tròn (O; R). Hai dây AB, CD song song với nhau sao cho tâm O nằm

Câu hỏi :

Cho đường tròn (O; R). Hai dây AB, CD song song với nhau sao cho tâm O nằm trong dải song song tạo bởi AB, CD. Biết khoảng cách giữa hai dây đó bằng 11cm và AB = 103cm, CD = 16cm. Tính R

A. R = 52 (cm)

B. R = 102 (cm)

C. R = 10 (cm)

D. R = 53 (cm)

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Kẻ OHAB; OKCD (HAB; KCD)

Theo bài ra ta có HK = 11 (cm)

Khi đó ta có H, K lần lượt là trung điểm của AB và CD (quan hệ vuông góc giữa đường kính và dây cung)

 HB=AB2=53 cm; KD=CD2=8 cm

Áp dụng định lý Pytago ta có: OB2=OD2 HB2+OH2=OK2+KD2

Đặt OH = x (0 < x < 11)  OK = 11 – x

Khi đó ta có: HB2+x2=(11x)2+KD2

532+x2=(11x)2+KD275+x2=x222x+121+64x=5 tm

Vậy R=OB=532+52=10 cm

Copyright © 2021 HOCTAP247