Cho tam giác ABC có góc B= 30 độ, đường trung tuyến AM, đường cao CH

Câu hỏi :

Cho tam giác ABC có B^ = 30o, đường trung tuyến AM, đường cao CH. Vẽ đường tròn ngoại tiếp BHM. Kết luận nào sai khi nói về các cung HB; MB; MH của đường tròn ngoại tiếp tam giác MHB?

A. Cung HB lớn nhất

B. Cung HB nhỏ nhất

C. Cung MH nhỏ nhất

D. Cung MB = cung MH

* Đáp án

* Hướng dẫn giải

Vì trong một đường tròn hai cung bằng nhau căng hai dây bằng nhau nên ta đi so sánh các đoạn thẳng HB; MB; MH

Xét tam giác BCH vuông tại H có:

cosB = HBBCHBBC = cos 30o = 32HB=32BC(*)

Xét tam giác HBC vuông tại H có HM là trung tuyến ứng với cạnh huyền nên HM = BM = CM =  (**)

BC2<32BC nên từ (*) và (**) ta có BM = HM < HB

Suy ra cung MB = cung HM < cung HB

Hay cung HB là cung lớn nhất nên B sai

Đáp án cần chọn là: B

Copyright © 2021 HOCTAP247