Từ một điểm A ở bên ngoài đường tròn (O) ta vẽ hai tiếp tuyến AB, AC với đường

Câu hỏi :

Từ một điểm A ở bên ngoài đường tròn (O) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên AO lấy điểm M sao cho AM = AB. Các tia BM và CM lần lượt cắt đường tròn tại một điểm thứ hai là D và E. Chọn câu đúng

A. M là tâm đường tròn ngoại tiếp tam giác OBC

B. DE là đường kính của đường tròn (O)

C. M là tâm đường tròn nội tiếp tam giác OBC

D. Cả A, B, C đều sai

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Tam giác ABM có AB = AM nên ABM cân tại A ABM^=AMB^(1)

Ta có: OA  BC; OB AB nên: ABM^+MBO^=90oAMB^+MBC^=90o(2)

Từ (1) và (2) MBO^=OCM^

Tương tự BCM^=OCM^

Điểm M là giao điểm hai đường phân giác của tam giác OBC nên M là tâm đường tròn nội tiếp tam giác OBC

Vì tam giác BOD cân tại O  MBO^=MDO^ mà MBO^=MBC^ nên MBC^=MDO^

Mà hai góc này ở vị trí so le trong nên OD // BC

Chứng minh tương tự, ta có OE // BC

 D, O, E thẳng hàng

Vậy DE là đường kính của đường tròn (O)

Copyright © 2021 HOCTAP247