Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau

Câu hỏi :

Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Gọi M là trung điểm BC. Chọn câu sai?

A. AH  BC

B. OM // AH

C. HM = HF2

D. OM  BF

* Đáp án

D

* Hướng dẫn giải

Xét (O) có ACF^ = 90o; ABF^ = 90o (góc nội tiếp chắn nửa đường tròn)

Suy ra CF  AC; BF  AB mà BD  AC; CE  AB

=> BD // CF; CE // BF

=> BHCF là hình bình hành.

Có M là trung điểm của BC nên M cũng là trung điểm của HF hay HM =  HF2

Khi đó OM là đường trung bình của tam giác AHF nên AH // OM

Xét tam giác ABC có BD và CE là hai đường cao cắt nhau tại H nên H là trực tâm tam giác ABC => AH BC mà AH // OM => OM  BC

Đáp án D sai vì OM  BC mà BC cắt BF nên OM không thể vuông với BF

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Góc nội tiếp có đáp án (Vận dụng) !!

Số câu hỏi: 5

Copyright © 2021 HOCTAP247