Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn đường kính BH cắt

Câu hỏi :

Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn đường kính BH cắt AB tại D, đường tròn đường kính CH cắt AC tại E. Chọn khẳng định sai trong các khẳng định sau:

A. DE là cát tuyến của đường tròn đường kính BH

B. DE là tiếp tuyến của đường tròn đường kính BH

C. Tứ giác AEHD là hình chữ nhật

D. DE  DI (với I là trung điểm BH)

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Gọi I, J lần lượt là trung điểm của BH và CH

Để chứng minh DE là tiếp tuyến của đường tròn tâm I đường kính BH ta chứng minh ID  DE hay ODI^ = 90o

Vì D, E lần lượt thuộc đường tròn đường kính BH và HC nên ta có BDH^=CEH^=90o

Suy ra tứ giác ADHE là hình chữ nhật

Gọi O là giao điểm của AH và DE, khi đó ta có OD = OH = OE = OA

Suy ra ODH cân tại I ODH^=OHD^

Ta cũng có IDH cân tại I IDH^=IHD^

Từ đó IDH^+HDO^=IHD^+DHO^IDO^=90o IDDE

Ta có ID DE, D (I) nên DE là tiếp tuyến của đường tròn đường kính BH

Từ chứng minh trên, suy ra các phương án B, C, D đúng

Copyright © 2021 HOCTAP247