Cho tam giác ABC cân tại A, I là tâm đường tròn nội tiếp, K là tâm đường tròn

Câu hỏi :

Cho tam giác ABC cân tại A, I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp trong góc A. Gọi O là trung điểm của IK. Tính bán kính đường tròn (O)  biết AB = AC = 20cm, BC = 24cm

A. 18cm

B. 15cm

C. 12cm

D. 9cm

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Vì tam giác ABC cân tại A nên I; K  đường thẳng AH với {H} = BC  AI

Ta có: HCI^=12HCA^;KCH^=12xCH^

ICK^=ICH^+HCK^=12ACH^+HCx^ = 90o

Ta có tam giác CKI vuông nên CKI^+CIO^= 90o, lại có CIK^+ICH^ = 90o mà CI là phân giác ACB^ nên ACI^=CKO^

Có tam giác COK cân tại O nên ACI^=OCK^=CKO^

Nên ICO^+ACI^=ICO^+OCK^ = 90o

Suy ra ACO^ = 90o  OC  AC

Ta cos HB = HC (AK là trung trực của BC)  HB=BC2=12

Theo Pytago ta có AH =AC2HC2=16

Lại có ACH  COH (hai tam giác vuông có COH^=ACH^ vì cùng phụ với HCO^)

AHAC=HCCOCO=AC.HCAH=15

Copyright © 2021 HOCTAP247