Hai thấu kính, một hội tụ \((f_1 = 20 cm)\), một phân kỳ \((f_2 = -10 cm)\), có cùng trục chính. Khoảng cách hai quang tâm là l = 30 cm. Vật AB vuông góc với trục chính được đặt bên trái \(L_1\) và cách \(L_1\) một đoạn \(d_1\).
a) Cho \(d_1= 20 cm\), hãy xác định vị trí và tính số phóng đại ảnh cuối cùng cho bởi hệ hai thấu kính. Vẽ ảnh.
b) Tính \(d_1\) để ảnh sau cùng là ảnh ảo và bằng hai lần vật.
Bài 3 là dạng bài Hệ hai thấu kính gồm 1 thấu kính và 1 thấu kính phân kỳ đồng trục ghép sát nhau.
Ta tiến hành giải theo các bước như sau:
Bước 1: Lập sơ đồ tạo ảnh qua hệ thấu kính
Bước 2: Xác định vị trí dựa vào sơ đồ tạo ảnh
Bước 3: Tính số phóng đại ảnh cuối cùng cho bởi hệ hai thấu kính từ công thức \(k=\frac{\left | d'_2 \right |}{d_1}\)
Bước 4: Vẽ lại hình ảnh của hệ hai thấu kính đồng trục ghép sát nhau
Bước 5: Lặp lại tính toán và thay số vào theo yêu cầu của câu b.
Áp dụng phương pháp trên để giải bài 3 như sau:
Ta có:
Sơ đồ tạo ảnh qua hệ thấu kính:
Ta có: \(d_1=20cm, f_1=20cm, l=30cm\)
⇒ \(d_1'=\propto\)
\(d_2=l-d_1'=-\propto\)
⇒ \(d_2'=f_2=-10cm\)
Vẽ hình 30.2 SGK:
Từ hình vẽ ta thấy:
Vì \(A_1B_1\) ở vô cực nên chùm tia sáng từ AB tới qua tâm O1 sẽ qua \(A_1B_1\) và là chùm tia song song . Tương tự, chùm tia sáng từ \(A_1B_1\) tới qua tâm O2 sẽ qua \(A_2B_2\) cùng là chùm tia song song.
⇒ Tam giác \(ABO_1\)đồng dạng với tam giác \(A_2B_2O_2\) suy ra:
\(k=\frac{A_2B_2}{AB}=\frac{A_2O_2}{AO_1}=\frac{\left | d'_2 \right |}{d_1}= \frac{\left |-10 \right |}{20}=\frac{1}{2}\)
Ảnh \(A_2B_2\) là ảnh ảo và bằng hai lần vật. Ta có:
\(\Rightarrow d'_1=\frac{d_1.f_1}{d_1-f_1}=20.\frac{d_1}{d_1-20}\)
\(d_2=1-d_1\Rightarrow d_2=30\)
\(=20.\frac{d_1}{d_1-20}=\frac{10(d_1-60)}{d_1-20}\)
\(\Rightarrow \frac{5(60-d_1)}{d_1-40}< 0\)
\(\Rightarrow d_1<40 \ cm\) và \(d_2>60 \ cm\)
Ảnh \(A_2B_2\) là ảnh ảo và bằng hai lần vật AB:
\(k=\left ( -\frac{d_1}{d_1} \right ).\left ( -\frac{d_2}{d_2} \right )= \frac{d_1.d_2}{d_1.d_2}\)
\(=\frac{10}{d_1-40}=\pm 2\Rightarrow \Rightarrow k=\pm 2=\frac{20}{d_1-60}\) (*)
Giải phương trình (*) ra ta được: \(d_1\)=35cm ( nhận) và \(d_1\) =45cm (loại)
a. \(d_2'=f_2=-10cm\) và \(k=\frac{1}{2}\)
b. \(d_1\)=35cm
-- Mod Vật Lý 11
Copyright © 2021 HOCTAP247