Bài 106 trang 42 SGK Toán 6 tập 1

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

 Viết số tự nhiên nhỏ nhất có năm chữ số sao cho số đó:
a) Chia hết cho \(3\);
b) Chia hết cho \(9\).

Hướng dẫn giải

- Dấu hiệu chia hết cho 3 là: các số có tổng chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó mới chia hết cho 3.

- Dấu hiệu chia hết cho 9 là: các số có tổng chữ số chia hết cho 9 thì chia hết cho 9 và chỉ những số đó mới chia hết cho 9.

Lời giải chi tiết

a) Số nhỏ nhất có năm chữ số là: \(10000\). 

Gọi số nhỏ nhất có năm chữ số chia hết cho \(3\) là: \(\overline {abcde} \)

Do đó: \(\overline {abcde} \ge 10000\)

Mà \(10000\) không chia hết cho \(3\) nên  \(\overline {abcde} > 10000\) 

Do \(\overline {abcde} \) nhỏ nhất chia hết cho \(3\) 

và \(a\in\left\{1,2,3,4,5,6,7,8,9\right\}\) ( \(a\ne 0\) vì \(a=0\) thì \(\overline {abcde} \) trở thành số có ba chữ số)  nên \(a=1\) nhỏ nhất.

Tương tự \(b\in\left\{0,1,2,3,4,5,6,7,8,9\right\}\) nên \(b=0\) nhỏ nhất.

\(c\in\left\{0,1,2,3,4,5,6,7,8,9\right\}\) nên \(c=0\) nhỏ nhất.

\(d\in\left\{0,1,2,3,4,5,6,7,8,9\right\}\) nên \(d=0\) nhỏ nhất.

\(e\in\left\{0,1,2,3,4,5,6,7,8,9\right\}\) nhưng \(\overline {abcde} \) chia hết cho \(3\) nên \((a+b+c+d+e)\) chia hết cho \(3\)

Do đó: \((1+e)\) chia hết cho \(3\) nên \(e=2\) nhỏ nhất thỏa mãn điều kiện.

Vậy số phải tìm là \(10002\).

b) Tương tự số phải tìm là \(10008\).

Copyright © 2021 HOCTAP247