Cho các đa thức:
A = x2 – 2y + xy + 1
B = x2 + y - x2y2 - 1.
Tìm đa thức C sao cho:
a) C = A + B; b) C + A = B.
Ta có: A = x2 – 2y + xy + 1; B = x2 + y - x2y2 - 1
a) C = A + B
C = (x2 – 2y + xy + 1) +(x2 + y - x2y2 - 1)
C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1
C = (x2 + x2) + (-2y + y) + xy - x2y2 + (1 - 1)
C = 2x2 – y + xy - x2y2
b) C + A = B \( \Rightarrow \) C = B - A
C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)
C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1
C = (x2 - x2) - x2y2 - xy + (y + 2y) + (-1 - 1)
C = - x2y2 - xy + 3y - 2.
Copyright © 2021 HOCTAP247