Tính tổng của các đa thức:
a) P = x\(^2\)y + xy\(^2\) – 5x\(^2\)y\(^2\) + x\(^3\) và Q = 3xy\(^2\) – x\(^2\)y + x\(^2\)y\(^2\)
b) M = x\(^3\) + xy + y\(^2\) – x\(^2\)y\(^2\) – 2 và N = x\(^2\)y\(^2\) + 5 – y\(^2\)
a) P + Q = ( x\(^2\)y + xy\(^2\) – 5x\(^2\)y\(^2\) + x\(^3\)) + (3xy\(^2\) – x\(^2\)y + x\(^2\)y\(^2\) )
= x\(^2\)y + xy\(^2\) - 5x\(^2\)y\(^2\) + x\(^3\) + 3xy\(^2\) - x\(^2\)y + x\(^2\)y\(^2\)
= (x\(^2\)y - x\(^2\)y) + (xy\(^2\) + 3xy\(^2\)) + (-5x\(^2\)y\(^2\) + x\(^2\)y\(^2\)) + x\(^3\)
= 4xy\(^2\) - 4x\(^2\)y\(^2\) + x\(^3\)
b) M + N = (x\(^3\) + xy + y\(^2\) – x\(^2\)y\(^2\) – 2) + ( x\(^2\)y\(^2\) + 5 – y\(^2\))
= x\(^3\) + xy + y\(^2\) - x\(^2\)y\(^2\) - 2 + x\(^2\)y\(^2\) + 5 - y\(^2\)
= x\(^3\) + xy + (y\(^2\) - y\(^2\)) + (-x\(^2\)y\(^2\) + x\(^2\)y\(^2\)) + (-2+5)
= x\(^3\) + xy + 3
Copyright © 2021 HOCTAP247