Bài 2 trang 66 SGK Toán 8 tập 1

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác.

a) Tính các góc ngoài của tứ giác ở hình 7a.

b) Tính tổng các góc ngoài của tứ giác ở hình 7b (tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài): \(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}} = ?\)

c) Có nhận xét gì về tổng các góc ngoài của tứ giác?

Hướng dẫn giải

+) Áp dụng định lý: Tổng các góc trong tứ giác bằng \({360^0}\)

+) Áp dụng tính chất: Tổng hai góc kề bù bằng \({180^0}\)

Lời giải chi tiết

\(a)\widehat A + \widehat B + \widehat C + \widehat D = {360^0}\) (định lý tổng 4 góc trong tứ giác)

\(\begin{array}{l}
\widehat {{D}}= {360^0} - \left( {\widehat A + \widehat B + \widehat C} \right)\\
= {360^0} - \left( {{{90}^0} + {{120}^0} + {{75}^0}} \right)\\
= {360^0} - {285^0}\\= {75^0}
\end{array}\)

Ta có:+) \(\widehat {BAD} + \widehat {{A_1}} = {180^0}\) (2 góc kề bù)

\(\begin{array}{l}
\widehat {{A_1}} = {180^0} - \widehat {BAD}\\
= {180^0} - {75^0} = {105^0}.
\end{array}\)

+) \(\widehat {{B_1}} + \widehat {CBA} = {180^0}\) (2 góc kề bù)

\(\begin{array}{l}
\widehat {{B_1}} = {180^0} - \widehat {CBA}\\= {180^0} - {90^0} = {90^0}.
\end{array}\)

+) \(\widehat {{C_1}} + \widehat {BCD} = {180^0}\) (2 góc kề bù)

\(\begin{array}{l}
\widehat {{C_1}} = {180^0} - \widehat {BC{\rm{D}}}\\= {180^0} - {120^0} = {60^0}.
\end{array}\)

+) \(\widehat {{D_1}} + \widehat {ADC} = {180^0}\)

\(\begin{array}{l}
\widehat {{D_1}} = {180^0} - \widehat {{\rm{ADC}}}\\= {180^0} - {75^0} = {105^0}.
\end{array}\)

\(b)\widehat {{A}} + \widehat {{B}} + \widehat {{C}} + \widehat {{D}} = {360^0}\)

(định lý tổng 4 góc trong tứ giác)

\(\begin{array}{l}
\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}}\\ = \left( {{{180}^0} - \widehat {{A}}} \right) + \left( {{{180}^0} - \widehat {{B}}} \right) \\+ \left( {{{180}^0} - \widehat {{C}}} \right) + \left( {{{180}^0} - \widehat {{D}}} \right)\\
= {180^0}.4 - \left( {\widehat {{A}} + \widehat {{B}} + \widehat {{C}} + \widehat {{D}}} \right)\\
= {720^0} - {360^0} = {360^0}.
\end{array}\)

c) Nhận xét: Tổng các góc ngoài của tứ giác bằng 360

 


Copyright © 2021 HOCTAP247