Điền vào chỗ trống, biết rằng \(a, b\) là độ dài các cạnh, \(d\) là độ dài đường chéo của một hình chữ nhật.
Áp dụng định lý pytago.
Lời giải chi tiết
Cột thứ hai:
Áp dụng định lí Pytago vào tam giác vuông \(ABC\) ta có:
\({d^{2}} = {\rm{ }}{a^2} + {\rm{ }}{b^2} = {\rm{ }}{5^2} + {\rm{ }}{12^2} = {\rm{ }}25{\rm{ }} + {\rm{ }}144{\rm{ }}\)\( = {\rm{ }}169\)
Nên \(d =\sqrt{169}= 13\)
Cột thứ ba:
Áp dụng định lí Pytago vào tam giác vuông \(ABC\) ta có:
\({a^2} + {\rm{ }}{b^{2}} = {d^2} \Rightarrow {a^2} = {\rm{ }}{d^2} - {b^2} = (\sqrt{10}\))2 - (\(\sqrt{6}\))2
\(= 10 – 6 = 4\Rightarrow a = \sqrt 4=2\)
Cột thứ tư:
Áp dụng định lí Pytago vào tam giác vuông \(ABC\) ta có:
\({a^2} + {\rm{ }}{b^{2}} = {\rm{ }}{d^2}\)
\(\Rightarrow {b^2} = {\rm{ }}{d^2} - {\rm{ }}{a^2} = {\rm{ }}{7^2} - (\sqrt{13}\))2
\(= 49 – 13 = 36\)\(\Rightarrow b=\sqrt {36}= 6\)
Copyright © 2021 HOCTAP247