Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của hình thoi.
Áp dụng dấu hiệu nhận biết hình thoi: Tứ giác có bốn cạnh bằng nhau là hình thoi.
Lời giải chi tiết
Giả sử hình chữ nhật \(ABCD\) có \(E,F,G,H\) lần lượt là trung điểm của \(AB,BC,CD,DA\)
Bốn tam giác vuông \(EAH, EBF, GDH, GCF\) có:
\(AE = BE = DG = CG\) ( = \(\frac{1}{2}AB\) = \(\frac{1}{2}CD\) )
\(HA = FB = DH = CF\) ( = \(\frac{1}{2}AD = \frac{1}{2}BC\) )
Xét \(∆EAH\) và \(∆EBF\) có:
\(\left\{ \begin{array}{l}
A{\rm{E}} = BE\left( {cmt} \right)\\
\widehat A = \widehat B = {90^0}\left( {gt} \right)\\
AH = BF\left( {cmt} \right)
\end{array} \right.\)\( \Rightarrow \Delta AHE = \Delta BEF\left( {c - g - c} \right)\)
\( \Rightarrow \) \(EH = EF \) (2 cạnh tương ứng) (1)
Xét \(∆HDG\) và \(∆FCG\) có:
\(\left\{ \begin{array}{l}
H{\rm{D}} = FC\left( {cmt} \right)\\
\widehat D = \widehat C = {90^0}\left( {gt} \right)\\
DG = CG\left( {cmt} \right)
\end{array} \right.\)\( \Rightarrow \Delta HDG = \Delta FCG\left( {c - g - c} \right)\)
\( \Rightarrow \) \(GH = GF \) (2 cạnh tương ứng) (2)
Xét \(∆AHE\) và \(∆DHG\) có:
\(\left\{ \begin{array}{l}
H{\rm{A}} = HD\left( {cmt} \right)\\
\widehat A = \widehat D = {90^0}\left( {gt} \right)\\
AE = DG\left( {cmt} \right)
\end{array} \right. \)\(\Rightarrow \Delta AHE = \Delta DHG\left( {c - g - c} \right)\)
\( \Rightarrow \) \(EH = HG \) (2 cạnh tương ứng) (3)
Từ (1), (2) và (3) \( \Rightarrow HE=EF = HG = GF\)
\( \Rightarrow \) \(EFGH\) là hình thoi (dấu hiệu nhận biết hình thoi).
Copyright © 2021 HOCTAP247