Rút gọn:
a) \( \frac{2}{x^2-y^2} \sqrt{\frac{3(x+y)^2}{2}}\) với \(x \ge, y\ge; x \neq y \)
b) \( \frac{2}{2x-1} \sqrt{5a(1-4a+4a^2)}\) với a> 0,5
Giải :
a) \( \frac{2}{x^2-y^2} \sqrt{\frac{3(x+y)^2}{2}}\)= \( \frac{ |(x+y)|}{x^2-y^2}.\sqrt{\frac{4.3}{2}}\)=\( \frac{ |(x+y)|}{(x+y)(x-y)}.\sqrt{6}= \frac{\sqrt{6} }{x+y}\) ( Vì x+y>0 nên |x+y|= (x+y))
b) \( \frac{2}{2x-1} \sqrt{5a(1-4a+4a^2)}\)= \( \frac{2}{2x-1} \sqrt{5a(1-2a)^2)}\)= \( \frac{2}{2a-1}|a|.|1-2a|.\sqrt{5}= \frac{2\sqrt{5}}{2a-1}.a.(2a-1)=2a\sqrt{5} \) vì \(a> \frac{1}{2} \) nên 1-2a < 0 suy ra |1-2a|= 2a-1)
Copyright © 2021 HOCTAP247