Tìm số đo của góc giữa hai đường thẳng \(d_1\) và \(d_2\) lần lượt có phương trình: \(d_1: 4x - 2y + 6 = 0\) và \(d_2: x - 3y + 1 = 0\)
Cho hai đường thẳng: \({d_1}:\;{a_1}x + {b_1}y + {c_1} = 0,\) \({d_2}:\;{a_2}x + {b_2}y + {c_2} = 0.\)
Gọi \( \varphi \) là góc giưa hai hai đường thẳng trên. Khi đó:
\[\cos \varphi = \frac{|a_{1}.a_{2}+b_{1}.b_{2}|}{\sqrt{{a_{1}}^{2}+{b_{1}}^{2}}\sqrt{{a_{2}}^{2}+{b_{2}}^{2}}}.\]
Lời giải chi tiết
Áp dụng công thức: \(\cos \varphi = \frac{|a_{1}.a_{2}+b_{1}.b_{2}|}{\sqrt{{a_{1}}^{2}+{b_{1}}^{2}}\sqrt{{a_{2}}^{2}+{b_{2}}^{2}}}\)
Ta có: \(\cos \varphi = \frac{|4.1+(-2 ).(-3)|}{\sqrt{4^{2}+(-2)^{2}}\sqrt{1^{2}+(-3)^{2}}}\)
\(\Rightarrow \cos \varphi = \frac{10 }{\sqrt{20}\sqrt{10}}\) = \(\frac{10 }{10\sqrt{2}}\) = \(\frac{1 }{\sqrt{2}}\) \(\Rightarrow \varphi = 45^0\)
Copyright © 2021 HOCTAP247