Lập phương trình đường tròn \((C)\) trong các trường hợp sau:
a) \((C)\) có tâm \(I(-2; 3)\) và đi qua \(M(2; -3)\);
b) \((C)\) có tâm \(I(-1; 2)\) và tiếp xúc với đường thẳng \(d : x – 2y + 7 = 0\)
c) \((C)\) có đường kính \(AB\) với \(A(1; 1)\) và \(B(7; 5).\)
+) Đường tròn \((C)\) có tâm \(I(a; \, b)\) và đi qua điểm \(M\) thì có bán kính là \(R=IM\) và có phương trình: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2} = I{M^2}.\)
+) Đường tròn \((C)\) có tâm \(I(a; \, b)\) và tiếp xúc với đường thẳng \(d\) thì \(R = d\left( {I;\;d} \right).\)
+) Đường tròn \((C)\) đi qua hai điểm \(A\) và \(B\) thì có tâm \(I\) là trung điểm của \(AB\) và bán kính: \(R = \frac{{AB}}{2}.\)
Lời giải chi tiết
a) Ta tìm bán kính \({R^2} = {\rm{ }}I{M^2} \)\(\Rightarrow {R^{2}} = {\rm{ }}IM{\rm{ }} = {\rm{ }}{\left( {2{\rm{ }} + {\rm{ }}2} \right)^2} + {\rm{ }}( - 3{\rm{ }} - {3^2}){\rm{ }} \)\(= {\rm{ }}52\)
Phương trình đường tròn \((C)\):
\({\left( {x{\rm{ }} + 2} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}3} \right)^2} = 52\)
b) Đường tròn tiếp xúc với đường thẳng \(d\) nên khoảng cách từ tâm \(I\) tới đường thẳng \(d\) phải bằng bán kính đường tròn:
\(d(I; d) = R\)
Ta có : \( R = d(I, d) = \frac{|-1-2.2+7|}{\sqrt{1^{2}+(-2)^{2}}}\) = \(\frac{2}{\sqrt{5}}\)
Phương trình đường tròn cần tìm là:
\({\left( {x{\rm{ }} + 1} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}2} \right)^2}= \left(\frac{2}{\sqrt{5}}\right )^{2}\)
\( \Leftrightarrow {\left( {x{\rm{ }} + 1} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}2} \right)^2} = {4 \over 5}\)
c) Tâm \(I\) là trung điểm của \(AB\), có tọa độ :
\(x = \frac{1 +7}{2} = 4\); \(y = \frac{1 +5}{2} = 3\) suy ra \(I(4; 3)\)
\(AB = 2\sqrt {13}\) suy ra \( R = \sqrt {13}\)
Phương trình đường tròn cần tìm là:
\({\left( {x{\rm{ }} - 4{\rm{ }}} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}3} \right)^2} = 13\)
Copyright © 2021 HOCTAP247