Bài 3 trang 84 SGK Hình học 10

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Lập phương trình đường tròn đi qua ba điểm:

a) \(A(1; 2); B(5; 2); C(1; -3)\)

b) \(M(-2; 4); N(5; 5); P(6; -2)\)

Hướng dẫn giải

Gọi phương trình đường tròn có dạng:  \(x^2+y^2-2 ax – 2by +c = 0\) 

Khi đó thay tọa độ 3 điểm đề bài cho vào phương trình đường tròn ta được hệ phương trình 3 ẩn. Giải hệ phương trình này ta tìm được \(a, \, \, b, \, \, c\) hay tìm được phương trình đường tròn cần lập.

Lời giải chi tiết

Sử dụng phương trình đường tròn có dạng:  \(x^2+y^2-2 ax – 2by +c = 0\) 

a) Đường tròn đi qua điểm \(A(1; 2)\) nên ta có:

\(1^2+ 2^2– 2a -4b + c = 0   \)\(\Leftrightarrow   2a + 4b – c = 5\)

Đường tròn đi qua điểm \(B(5; 2)\) nên ta có:

\(5^2+ 2^2– 10a -4b + c = 0 \)\(\Leftrightarrow    10a + 4b – c = 29\)

Đường tròn đi qua điểm \(C(1; -3)\) nên ta có:

\(1^2+ (-3)^2 – 2a + 6b + c = 0   \)\(\Leftrightarrow     2a - 6b – c = 10\)

Để tìm \(a, b, c\) ta giải hệ: \(\left\{\begin{matrix} 2a + 4b- c = 5 (1) & & \\ 10a +4b - c= 29 (2) & & \\ 2a- 6b -c =10 (3) & & \end{matrix}\right.\)

Giải hệ ta được:  \(\left\{ \matrix{
a = 3 \hfill \cr
b = - 0,5 \hfill \cr
c = - 1 \hfill \cr} \right.\)

Phương trình đường tròn cần tìm là: \({{x^2} + {\rm{ }}{y^2} - {\rm{ }}6x{\rm{ }} + {\rm{ }}y{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0} \)

b) Đường tròn đi qua điểm \(M(-2; 4)\) nên ta có:

\((-2)^2+ 4^2+4a -8b + c = 0 \)\(  \Leftrightarrow   4a - 8b + c = -20\)

Đường tròn đi qua điểm \(N(5; 5)\) nên ta có:

\(5^2+ 5^2– 10a -10b + c = 0\)\( \Leftrightarrow    10a +10b – c = 50\)

Đường tròn đi qua điểm \(P(6; -2)\) nên ta có:

\(6^2+ (-2)^2 – 12a + 4b + c = 0   \)\(\Leftrightarrow     12a - 4b – c = 40\)

Ta có hệ phương trình: 

$$\left\{ \matrix{
4a - 8b + c = - 20 \hfill \cr
10a + 10b - c = 50 \hfill \cr
12a - 4b - c = 40 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = 2 \hfill \cr
b = 1 \hfill \cr
c = - 20 \hfill \cr} \right.$$

Phương trình đường tròn đi qua ba điểm \(M(-2; 4); N(5; 5); P(6; -2)\) là:

\(x^2+ y^2- 4x – 2y - 20 = 0\) 

Copyright © 2021 HOCTAP247