Lập phương trình đường tròn đi qua ba điểm:
a) \(A(1; 2); B(5; 2); C(1; -3)\)
b) \(M(-2; 4); N(5; 5); P(6; -2)\)
Gọi phương trình đường tròn có dạng: \(x^2+y^2-2 ax – 2by +c = 0\)
Khi đó thay tọa độ 3 điểm đề bài cho vào phương trình đường tròn ta được hệ phương trình 3 ẩn. Giải hệ phương trình này ta tìm được \(a, \, \, b, \, \, c\) hay tìm được phương trình đường tròn cần lập.
Lời giải chi tiết
Sử dụng phương trình đường tròn có dạng: \(x^2+y^2-2 ax – 2by +c = 0\)
a) Đường tròn đi qua điểm \(A(1; 2)\) nên ta có:
\(1^2+ 2^2– 2a -4b + c = 0 \)\(\Leftrightarrow 2a + 4b – c = 5\)
Đường tròn đi qua điểm \(B(5; 2)\) nên ta có:
\(5^2+ 2^2– 10a -4b + c = 0 \)\(\Leftrightarrow 10a + 4b – c = 29\)
Đường tròn đi qua điểm \(C(1; -3)\) nên ta có:
\(1^2+ (-3)^2 – 2a + 6b + c = 0 \)\(\Leftrightarrow 2a - 6b – c = 10\)
Để tìm \(a, b, c\) ta giải hệ: \(\left\{\begin{matrix} 2a + 4b- c = 5 (1) & & \\ 10a +4b - c= 29 (2) & & \\ 2a- 6b -c =10 (3) & & \end{matrix}\right.\)
Giải hệ ta được: \(\left\{ \matrix{
a = 3 \hfill \cr
b = - 0,5 \hfill \cr
c = - 1 \hfill \cr} \right.\)
Phương trình đường tròn cần tìm là: \({{x^2} + {\rm{ }}{y^2} - {\rm{ }}6x{\rm{ }} + {\rm{ }}y{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0} \)
b) Đường tròn đi qua điểm \(M(-2; 4)\) nên ta có:
\((-2)^2+ 4^2+4a -8b + c = 0 \)\( \Leftrightarrow 4a - 8b + c = -20\)
Đường tròn đi qua điểm \(N(5; 5)\) nên ta có:
\(5^2+ 5^2– 10a -10b + c = 0\)\( \Leftrightarrow 10a +10b – c = 50\)
Đường tròn đi qua điểm \(P(6; -2)\) nên ta có:
\(6^2+ (-2)^2 – 12a + 4b + c = 0 \)\(\Leftrightarrow 12a - 4b – c = 40\)
Ta có hệ phương trình:
$$\left\{ \matrix{
4a - 8b + c = - 20 \hfill \cr
10a + 10b - c = 50 \hfill \cr
12a - 4b - c = 40 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = 2 \hfill \cr
b = 1 \hfill \cr
c = - 20 \hfill \cr} \right.$$
Phương trình đường tròn đi qua ba điểm \(M(-2; 4); N(5; 5); P(6; -2)\) là:
\(x^2+ y^2- 4x – 2y - 20 = 0\)
Copyright © 2021 HOCTAP247